EWENT

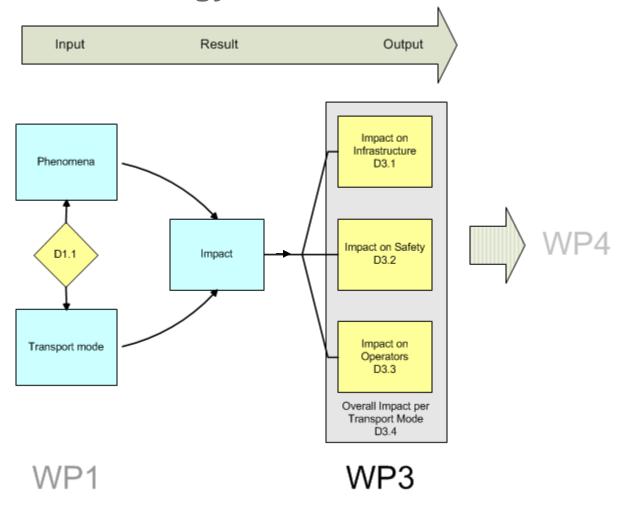
Extreme weather impacts on European networks of transport

Kreuz, Michael / Nokkala, Marko ASDA Seminar, University of Delft, 20th June

Outline

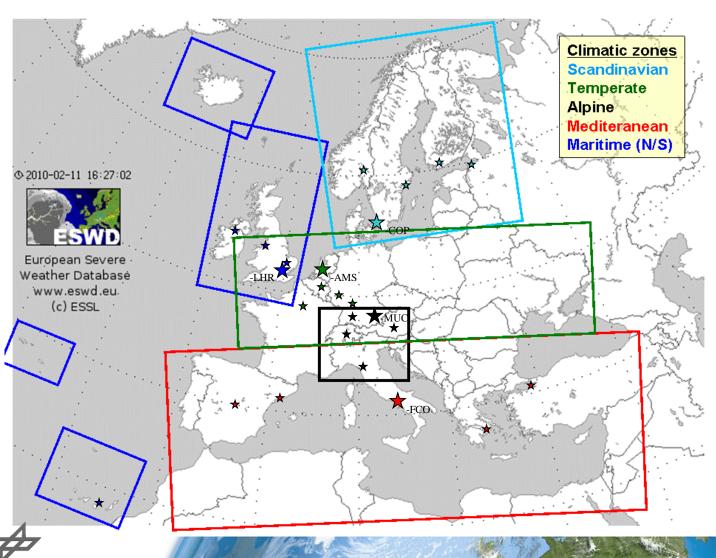
- Introduction and background
- Methodology
- Qualitative results
- Determination of social and operators costs in case of extreme weather
- Summary and outlook

Extreme weather – an aviation perspective

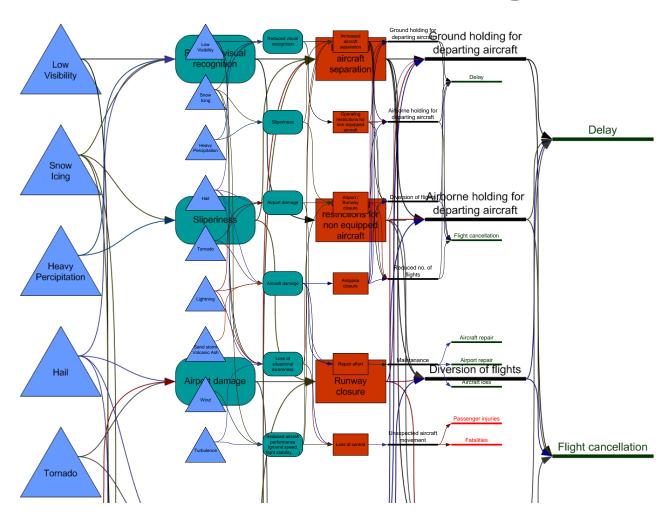


Work packages of greatest relevance

- WP1: Overview about the impacts of extreme weather phenomena on the European network on transport
- WP2: Probability today for these weather condition in each of the regions Probability in future for these weather condition
- WP3: Quantitative impact of the consequence, i.e. how many movements are cancelled and/or how many average delay minutes are generated?
- WP4: Determine the cost of the movement cancellation and/or delay and multiply these results with the probabilities from WP2



WP3 Methodology



Selected hub airports – practical approach

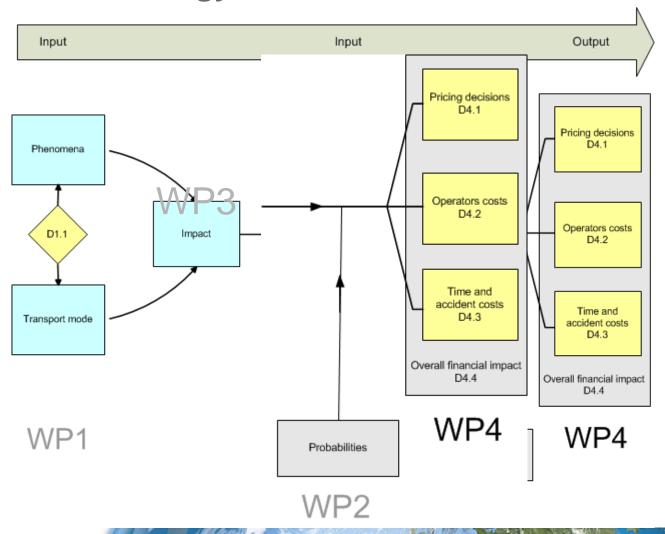
Qualitative results – causal diagram

Examples from Causal diagram


Decreasing Fog / Bad vision → Reduction of higher separation
 → Increase in capacity → Delay reduction

Increasing Wind / Thunderstorms → Runway / Airport closure
 Decrease in capacity → Delay / Cancellation

- **Higher temperature** \rightarrow Less de-icing \rightarrow Faster turnaround



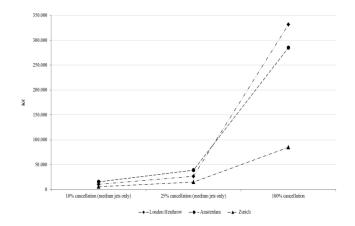
WP 4 Methodology

Operators Costs – calculation method

$$\frac{\emptyset \, M_{jets}}{day} \times weather(scenario)_{days} \times Canc.prop._{M_{jets}} \\ \times Canc.costs_{M_{jets}}$$

- This approach is used for the calculation of:
 - where 2010 and 2040 scenario
 - Medium and heavy jets $\frac{\phi M_{jets}}{dav}$ = average amount of medium jets per day
- Sensitivity narialysis = amount of extreme weather days in the respective scenario
- Average values of 5 up to 30 % cancellation (medium jets only)
 Assumption: Medium jets are prior to be cancelled due to economic canc. costs = cancellation costs per medium jet
 - Worst case scenario: Airport closure (100 % cancellation)

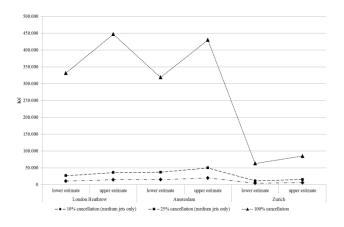
Operators costs – data used


	London Heathrow	Amsterdam	Zurich
Number of departures/year (in 2009)	239.280	220.656	131.499
Percentage of heavy jets	31 %	15 %	8 %
Percentage of medium jets	69 %	85 %	92 %
Cancellation costs heavy jets (€)	78.900 €	78.900 €	78.900 €
Cancellation costs medium jets (€)	16.900 €	16.900 €	16.900 €
Most significant weather phenomena (scenario 2010/scenario 2040) (days)	Cold temperatures (7/7)	Wind gusts (9/8)	Cold temperatures (5/4)

Sources: EUROCONTROL, Flightstats

Operators Costs – results scenario 2010

- Operators costs in London Heathrow and Amsterdam are a multiple of Zurich
- Slightly higher costs in Amsterdam compared to London Heathrow in case of 10% and 25% cancellation
- Vice versa situation in case of 100 % cancellation
 - ➤ Higher percentage of heavy jets in London compared to Amsterdam (Ø 31% vs. Ø 15%)



Source: http://vielflieger-blog.de/files/2010/05/landebahn-parkplatz.jpg

Operators Costs – results scenario 2040

- Sensitivity analysis concerning the annually rate of increase
 - Lower estimate: Same amount of flights as in 2010 scenario
 - Upper estimate: Annually increase of 1 % assumed
 - only one parameter has been changed to minimize the uncertainty and variability of the results
- Results show a similar distribution of values as in 2010 scenario

Source: http://vielflieger-blog.de/files/2010/05/landebahn-parkplatz.jpg

Social costs - calculation method

$$\frac{\emptyset Paxe}{M_{jets} \times day} \times prop_B \times VOT(scenario)_B \times time_{factor} \\ \times weather(scenario)_{days}$$

where

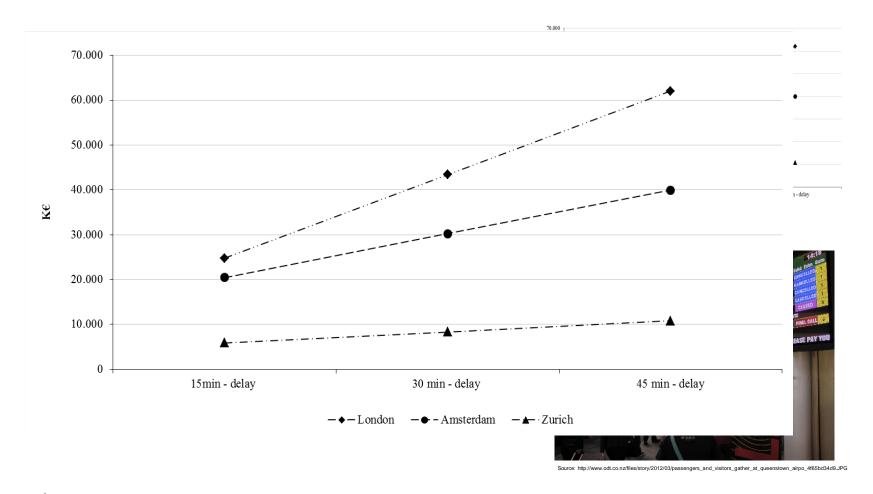
This approach is used for the calculation of:

Modium and heavy into

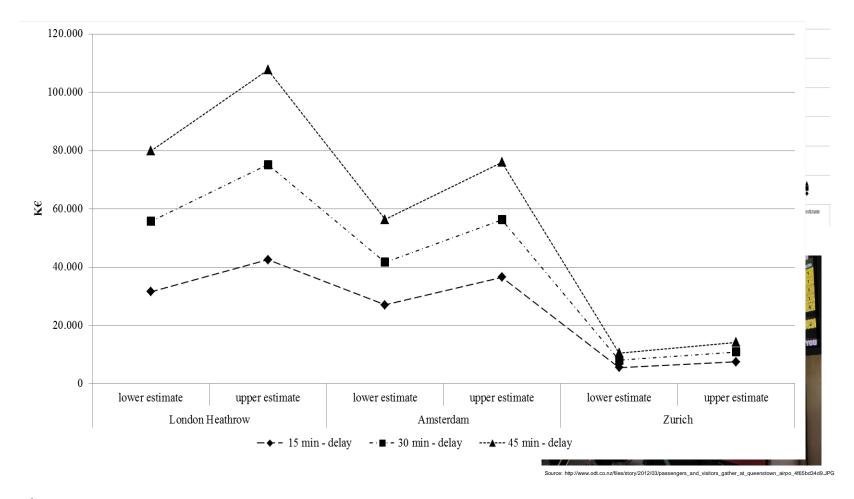
- Medium and heavy jets $prop_B$ = proportion of business travellers

- ^{VOT (scenario)} a ក្នុងlue of time for business travellers in the respective scenario time_{fa} Charign general time_{fa} Charign general time_{fa} Charign general time

 $weather(scenario)_{days}$ = amount of extreme weather days in the respective scenario


Social costs – data used

	London Heathrow	Amsterdam	Zurich
Number of departures/year (in 2009)	239.280	220.656	131.499
Percentage of heavy jets	31 %	15 %	8 %
Percentage of medium jets	69 %	85 %	92 %
Value of time business travellers (scenario 2010/scenario 2040)	47/63 €	47/63 €	47/63 €
Value of time leisure travellers (scenario 2010/scenario 2040)	23/26 €	23/26 €	23/26 €
Seat load factor (heavy/medium jets)	83/70 %	83/70 %	83/70 %
Average seat capacity (heavy/medium jets)	300/120	300/120	300/120


Sources: EURONCONTROL, Flightstats

Social Costs - results scenario 2010

Social Costs – results scenario 2040

Summary and outlook

- We received great interest in the results from the European Investment Bank (EIB)
 - ➤ Results from the EWENT project will be integrated in risk management tools dealing with credit allowances
- Output from this project will be the basis of a project "MOWE-IT" (management of weather events in transport systems)
 - ➤ Goal: Mitigation of the impacts of extreme weather on the European network of transport

Thank you for your attention!!!

Michael Kreuz Institute of Flight Guidance +49 531 295 2840 michael.kreuz@dlr.de

