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Introduction 

 

Computation of fuel minimal and noise minimal approach trajectories: 

 

So far: 

⇨ Optimization of stand-alone approach trajectories 

⇨ Limitations due to other aircraft in the vicinity of an airport are  

not taken into account 

⇨ Optimization results can not be put into practice due to the limitations  

arising from the remaining air traffic and the daily airport business 

 

Here: 

 Simultaneous optimization of the approach trajectories of multiple  

aircraft present in the vicinity of an airport 

 Landing sequence is not pre-determined and has to be found  

by the optimization procedure 

 More realistic results 
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2. Aircraft Simulation Model 
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Aircraft Simulation Model 

 

Point-Mass Simulation Model: 

 

Position Equations of Motion (NED-Frame): 

 

 

 

 

 

 

Translation Equations of Motion: 
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Aircraft Simulation Model 

 

Total sum of external forces: 

 

 

Thrust modeling:  

 

 

 

 

 

 

 

 

 

Aerodynamic coefficients: 
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Aircraft Simulation Model 

 

Aerodynamic Forces: 

 

 

 

 

 

 

Dynamic pressure: 

 

 

 

Force vector: 
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Aircraft Simulation Model 

 

Noise model: 

 

Sound pressure level: 

 

 

 

Sound exposure level: 

 

 

 

 

Number of Awakenings: 
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Aircraft Simulation Model 

 

Atmospheric model (DIN ISO 2533): 

 

 

 

 

 

 

 

 

 

Fuel consumption: 
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Outline 

 

 

 

3. Multi-Aircraft Optimization Problem 
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Multi-Aircraft Optimization Problem 

 

Determine the optimal control histories 

 

and the corresponding optimal state trajectories 

 

 

that minimize the Bolza cost functional  

 

subject to 

 

 the state dynamics 

 the initial boundary conditions 

 the final boundary conditions 

 the interior point conditions 

 the equality constraints 

 and the inequality constraints  
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Initial boundary conditions: 

 

 Defined by the entry position into the considered air space 

 

Final boundary conditions: 

 

 Assure that the aircraft are finally located on the ILS glide path 

 

 Final approach fix: located at the origin of the Local Fixed Frame 𝑁 

at an altitude of ℎ𝐹𝐴𝐹 

 

 ILS glide path: directed parallel to the 𝑥-axis of the Local Fixed Frame 𝑁,  

into the direction of the positive 𝑥-axis   

Multi-Aircraft Optimization Problem 
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Final boundary conditions: 

 

 Northward position: 

 

 Eastward position: 

 

 Altitude: 

 

 Glide-path angle: 

 

 Heading angle: 

 

 Kinematic velocity:   
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Multi-Aircraft Optimization Problem 
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Inequality path constraints: 

 

 Load factor: 

 

 Kinematic velocity: 

 

 Angle of attack: 

 

 Bank angle: 

 

 Thrust lever: 

 

 Eastward position: 

 

 Altitude: 

 

 Aircraft distance:   
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Multi-Aircraft Optimization Problem 



Institute of 

Flight System Dynamics Optimal Scheduling of Fuel-Minimal Approach Trajectories 
16 

 

Inequality path constraints: 

 

 Path constraints are formulated such that the aircraft have to follow  

the ILS glide path once the FAF has been passed 

 

 Eastward position: 

 

 

 

 Altitude: 

 

 

 

 

 Kinematic velocity:   
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Multi-Aircraft Optimization Problem 
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Inequality path constraints: 

 

 Path constraints are formulated such that the aircraft have to follow  

the ILS glide path once the FAF has been passed 

  

Permitted airspace Path constraints w.r.t. kinematic velocity 𝑽𝑲 

Multi-Aircraft Optimization Problem 
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Inequality path constraints: 

 

 A certain separation distance between the aircraft has to be maintained 

 

Aircraft distances: 

 

 

 

Normalization of flight times w.r.t. final flight times: 

 

 

 

Introduction of one single parameter for all flight times: 

 

 

 

 The time elapsed is the same for all aircraft 

 Constraints w.r.t. the minimum distances can be checked directly  

(because of the direct correlation of the time elapsed) 
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Cost function: 

 

Fuel-minimal approaches: maximize aircraft masses at the final times 

 

 

 

Noise-minimal approaches: minimize maximum sound pressure level  

or number of awakenings 

 

Integral cost functions: 

 The same flight time for all aircraft is enforced 

 Aircraft are located on different positions on the ILS glide path 

(i.e. they have covered different distances) 

 Equal weighting of the aircraft has to be achieved 

 

Portion of the integral cost function originating from flight along ILS glide path  

is not incorporated into the integral cost function: 
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Multi-Aircraft Optimization Problem 
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Full-Discretization Method – Forward (explicit) Euler: 

 

⇨ Time discretization (e.g. equidistant): 

 

 

 

⇨ Discretization of controls and states at time discretization points:  
 

 

 

⇨ Approximation of differential equations: 

 

 

 

⇨ Additional equality constraints: 
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Discretized Optimal Control Problem (Euler): 

 

Determine the optimal parameter vector 

 

that minimizes the cost function 

 

subject to 

 

 the inequality constraints 

 

 

 and the equality constraints 

 

 

 SNOPT (sequential quadratic programming SQP) 
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Solution Strategy: 

 

(1) Optimization without distance path constraints 

(2) Simultaneous optimization with distance path constraints,  

using previous results as initial guess 

 Distance path constraints fulfilled by initial guess: 

Initial guess = Optimal solution of constrained problem 

 Distance path constraints not fulfilled by initial guess: 

Separation of aircraft until path constraints are met 

Assumptions: 

 Optimal solution of unconstrained problem = Excellent initial guess of constrained 

problem  

 Cost function of a specific optimization problem is always less than or  

equal to the cost function of the same trajectory optimization problem with 

additional constraints 

Multi-Aircraft Optimization Problem 
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4. Results 
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Results 

 

Generic scenario: 

 

 The optimal landing sequence and the optimal approach trajectories  

for four aircraft are sought 

 Initial conditions: 

AC No. 1 2 3 4 

𝑥𝑖,0 −100000 𝑚 −80000 𝑚 −40000 𝑚 −100000 𝑚 

𝑦𝑖,0 100000 𝑚 50000 𝑚 −120000 𝑚 −70000 𝑚 

ℎ𝑖,0 4000 𝑚 4000 𝑚 5000 𝑚 6000 𝑚 

𝜒𝐾,𝑖,0 −60.0° −45.0° 95.0° 45.0° 

𝛾𝐾,𝑖,0 0.0° 0.0° 0.0° 0.0° 

𝑉𝐾,𝑖,0 450.0 𝑘𝑚/ℎ 360.0 𝑘𝑚/ℎ 540.0 𝑘𝑚/ℎ 600.0 𝑘𝑚/ℎ 
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Results 

Optimized approach trajectories 
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Results 

Optimized time histories of aircraft controls 

Distances between aircraft 
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Outline 

 

 

 

5. Summary & Outlook 
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Summary 

 The approach trajectories of multiple aircraft in the vicinity of an airport  

have been optimized simultaneously 

 

 Path constraints have been introduced so that the aircraft are finally  

located on the ILS glide path and keep a certain separation distance 

 

 The optimal landing sequence is determined by the optimization procedure 

 

 

Outlook 
 

 Utilization of splines to describe the centerlines of the allowed flight path corridors 

for the involved aircraft 

 

 Introduction of path constraints w.r.t. the maximum lateral and horizontal 

deviation from the centerlines 

 

 More sophisticated distance path constraints between aircraft 
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Thank you very much for your attention! 


